# FAO review : Data-poor assessment and management methods

### Helena Geromont and Doug Butterworth

MARAM (Marine Resource Assessment and Management Group) Department of Mathematics and Applied Mathematics University of Cape Town, Rondebosch 7701, South Africa



# Categorisation of data-poor methods: data requirements

Qualitative and semi-quantitative: FK, PSA and RVA

Per-Recruit: Biological lifehistory data

Length-based: Mean length of catch data Catch-based: Catch time series

Index-based: CPUE or survey index of abundance

MPA-based: Survey sampling in and out of reserve

# Qualitative and semi-quantitative methods

### Assessment models:

Fisher's Knowledge (FK) Productivity and Susceptibility Analysis (PSA) Decision trees (RVA) Caddy's traffic light system

Productivity: *r*,  $a_{max}$ ,  $a_{mat}$ ,  $L_{max}$ , *M*,  $\kappa$ Susceptibility: *F/M*, *B/K* 

Rapid visual assessment

Includes von Bertalanffy size-based limit

reference points:

$$Z = \frac{k(L_{\neq} - L_m)}{L_m - L_c}$$

# Qualitative and semi-quantitative methods

#### Advantages:

- A partnership approach;
- Combine expertise;
- Qualitative knowledge for Bayesian priors;
- Reconstruct time series data.

Assumptions:

Qualitative information nd/or scoring of ibutes and

- Subjective rather than objective feedback;
- Misinformation and hidden agendas;
- Difficult to quantify qualitative information;
- High levels of variability and bias;
- Qualitative approaches difficult to simulation test.

### Per-Recruit methods

### **Assessment models:**

Beverton-Holt Spawning Potential Ratio (LB-Length-based Per Recruit

SPR based on life-history ratios:

M/k  $L_m/L_{\downarrow}$  F/M

Yield-per recruit and Spawning biomass-per-recruit Size-based reference points:

$$Z = \frac{k(L_{\neq} - L_m)}{L_m - L_c}$$

#### Allows for change in F

## Per-Recruit methods

#### **Assumptions:**

librium

Advantages:

- Applied when time-serie are sparse and only kr of growth parameter
- Provides estimate of mortality;
- Provides basic refer
- Use in combination approaches.
- Cost-effective manage data-poor stocks;

- Does not take dynamic effects into account;
- Equilibrium conditions not likely to hold;
- Not suitable for species with high recruitment variability;
- Relies on accurate estimates of growth parameters and M

# Length-based methods

### **Assessment models:**

Decision tree with Length-based indicators

$$P_{obj} = P_{mat} + P_{opt} + P_{mega}$$



$$TAC_{y+1} = TAC_y \pm \text{step}$$

Stepwise Constant Catch MP (LstepCC):

Target-type MP (Ltarget):

$$TAC_{y+1} = 0.5TAC^* \left[ 1 + \left( \frac{L_y^{recent} - L^0}{L^{t \arg et} - L^0} \right) \right]$$

### Length-based methods

Ass

#### Advantages:

- Length data easy and cheap to collect;
- Simple approaches encourage participat stakeholders;
- Length-based indication can be used in HCRs
- Mean length HCRs are simple and intuitive

- Mean size can be imprecise indicator of stock depletion;
- For low h: not sufficient contrast between lengthbased indicators at different depletion levels;
- Lag in feedback from mean length data;
- Need extra precaution at low levels of depletion;
- HCRs not able to distinguish between noise and trend in mean length data.

## Catch-based methods



 $MSYL \times c \times M$ )

### Harvest control rules:

**Depletion Adjusted Catch Scalar (DACS):** 

Depletion corrected Average Cotch (DCA

### Catch-based methods

Catch

gener

fisher

easy t

requir

current

The H

•

- Catch time series is not informative about stock productivty and size;
- For data-poor fisheries, the total removals are not well-known;
- Catch time series effected by changes in effort regulations, markets, catchability...;
- HCRs incorporate no feedback about trends in biomass and these rules need to be very conservative to satisfy risk criteria;
- Catch-only methods provide shortterm TAC advice until additional data (eg a reliable index) are available;



### Index-based methods

#### **Assumptions:**

#### Advantages:

- Biomass dynamics models provides reliable estimates of stock-status and management quantities;
- Index-based methods have good track record;
- Index-based HCRs can track trends in biomass;
- Simple rules demonstrate robustness to uncertainty

he index of abundance liable indicator of biomass; atchability, q.

- Noisy data obscure trends in biomass
- Need good contrast in data to be able to estimate model parameters.

### **MPA-based methods**

Harvest control rules:

$$D = \frac{\sum \tilde{N}_{out} / n_{out}}{\sum \tilde{N}_{in} / n_{in}}$$

Density-Ratio Control Rule (DRCR):

MPA-based slope to target rule:

$$C_{y+1} = C_y (1 + kV_y)$$

## **MPA-based methods**

Assumptions:

The MPA represents the unfished population omics;
of the reserve is

#### Advantages:

- No historical data are required;
- The density ratio rule provides a simple mult species approach.

 These methods apply only to near-sedentary species

- Difficulty to obtain unbiased density estimates
- MPA must be well monitored and longestablished.

## Thank you

We thank the United nations Food and Agriculture Organisation (FAO) for the financial assistance for this review.

